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A STUDY OF THE METHOD FOR MEASURING THE LOCAL SIZE 
DISTRIBUTION OF SPHERICAL PARTICLES DIFFUSING 

IN A FLUID BY L.D.A. 

Suck Ju Yoon* 

(Received June 27, 1987) 

This work concerns a method for measuring the local size distribution of spherical particles diffusing in a fluid. It is based on 
the light scattering theory and makes use of an ordinary Laser Doppler Anemometry apparatus. The required information is 
obtained by analyzing and processing the signal from the PM, which observes the measuring volume at the angle of 90". The pinhole 
is replaced by a slit oriented in such a way that the intensity of the scattered light depends only on the diameter of the particle 
and on a single space variable. A direct calibration of the response of the optical system is used to compute the size distribution 
from the scattered light probability density. 
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1. INTRODUCTION 

Much research has been going on over the past years to 
find ways of measuring the statistical size distribution of a 
set of particles. It can be highly advantageous to extract  this 
information from the light scattered by the particles as they 
pass through the probe volume of a Doppler effect laser 
anemometer., as we can then hope to find not only the size 
distribution but also the velocity of the particles. Generally, 
the methods proposed can be broken down roughly into two 
categor ies :  those that deduce the size of the particles, 
assumed to he spherical, from the fringe visivility (Farmer, 
W.M., 1972) and those based on the diffusion theory  of 
spherical particles (Mie, G., 1908;Van de Hulst, H. C., 1957), 
which find the particle diameter from the pedestal value of 
the PM output signal(Umhauer, H., 1975;Yule, A.J.,et al. 
1977). 

The method described here belongs to the lat ter  category. 
It has the advantage of using conventional laser velocimetry 
to extract  the desired information from the PAl output signal. 
It is based on two elements:  a special arrangement of the 
optical system that simplifies the interpretation of the optical 
signal and a calibration of system response, which can be 
done in situ, to deconvolute the directly observed statistical 
distribution by processing the electrical signal from the 
photosensor. 

2. PRINCIPLE 

In a monochromatic laser velocimetry setup, the initial 
laser beam is divided into two beams of roughly the same 
intensity. These are sent through a device that bends the 
beams, making them cross each other. Interference fringes 
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form in the volume of the intersection, or probe volume, 
which consists of ideally parallel planes. The extent of the 
probe volume depends on the diameter of the beams and on 
the angle between them. 

The distance separating the fringes is a function of the light 
wavelength and of the angle between the beams. Given the 
geometrical configuration of the optical system and the 
nature of laser light, we can calculate this interfringe space, 
estimate the extent of the probe volume and, thus, the number 
of fringes it contains. These elements can be modified in- 
dependently by inserting certain simple devices in the optical 
path. 

The probe volume is simplified to an ellipsoid shape (Fig. 1) 
with the meridian y - z  plane coinciding with the plane com- 
mon to the incident beams, The point of intersection of the 
two beam axes is the point of origin 0. The  fr inges  are  
slices parallel to the x -y  equatorial plane. The fringe inten- 
sity decreases uniformly starting at the equatorial plane, so 
that by simplifying we can represent the local light intensity 

Ix 
Fig. 1 Probe volume geometry 
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Fig. 2 Photomultiplier signal 

I"  as we move along the x axis by a rake enveloped with a 
symmetrical distribution. Thus when a spherical particle of 
diameter D passes through the probe volume it diffuses light 
in a given direction and an intensity I '  which, as a function 
of z, looks like the curve in Fig. 2. We choose here the 
special case where the diameter D is larger than the interfrin- 
ge space i, which explains why I '  does not attain zero values 
when the center of the particle is in the median plane of a 
black fringe, when the particle is in uniform rectilinear 
motion in the probe volume, the Pig signal is recorded as a 
function of time, and if w is the z component of the particle 
velocity, the space-time function is z = wt. 

The signal in Fig. 2 can be considered as two super- 
imposed component : the high- frequency signal fo, or Dop- 
pler signal, giving the value for w from the interfringe 
distance, and a lower-frequency pedestal signal, the ampli- 
tude of which depends on the position where the particle 
passed through the equatorial plane, when there are enough 
fringes in the probe volume, the pedestal and Doppler signal 
frequency bands are very far apart, and the Doppler signal 
can be filtered out without altering the pedestal signal. We 
will assume here that this has already been done. The analy- 
sis then concerns only the pedestal signal, which thus 
simulates a continuous equivalent distribution of light in the 
probe volume. 

It is known that when a transparent sphere is illuminated 
by monochromatic light of wavelength ,~ and intensity I", the 
intensity, I" of the light which diffuses depends on the angle 
0, measured from the direction of the incident light under 
which it is observed, on I" and on the diameter of the sphere 
D. 

The refractive indices of the sphere and the medium around 
the sphere also play a role, but will here be concidered 
constant, taken into account implicitly in the relation 

I '  =f( I" ,O ,D)  (1) 

O can be eliminated by observing from the same angle at 
all times. Experiments then show that, under certain condi- 
tions, I '  can be expressed by 

I ' = c I " ( - ~ o )  ~ (2) 

Where c is a constant expressing the effects of 0, of the 
refractive indices and of other parameters. Do is a refer- 
ence diameter and a is a positive real unber. As distribu- 
tion of the light is not uniform inside the probe volume, I"  

depends on the position of the sphere-within the volume, 
whence 

The pedestal signal thus represents this function for a 
particle of diameter D moving parallel to the x axis. I '  
reaches a maximum at the passage through the equatorial 
plane, and the effect of z is eliminated when only this 
maximum value, denoted I,  is of interest, as is the case 
here. The previous relation reduces to an expression in the 
form 

�9 tr D ) <41 

Which shows that it is not possible to deduce the diameter 
D of the sphere from the measurement of I when the coor- 
dinated(X,  Y) of the point where it passes through the 
equatorial plane are known. 

The nature of the Eq.(4)can determined by a calibration. 
The optical axis of the PM is in the x - y  plane at an angle 
0 from the y axis as shown in Fig. 1. The plane of the incident 
laser beam axis is perpendicular to the x - y  plane. The same 
PM was used for two angles(0=10 ~ and 0=90 ~ 

A sample of spherical glass microballs with diameters 
going from 70 to 280 gm are glued to a point on glass 
sheets, and the assembly is mounted on a disk. 

The disk axis is located approximatedly in the x-y  plane, 
parallel to the y axis, and rotates in a bearing that can be 
translated parallel to the x and y axis. The circular path of 
the balls thus cuts orthogonally through the equatorial plane 
of the probe volume and the bearing can be moved to set the 
point of intersection at known coordinates. The value of the 
light I diffused by particles of different size as they pass 
through the equatorial plane is measured, as a function of x 
when y=0 ,  then as a function of y for x=0.  As an exam- 
ple, Fig. 3 shows the data obtained from three glass spher- 
es of different diameters for an angle 0 of 10 ~ The value 
for I is expressed in relation to the intensity Ic scattered 
by the particle when it passes point 0. ax and ~r~ are the 
standard deviations of the values for x and y, respectively. If 
we allow that the surfaces of equal light intensity I" are 

I / I .  

~~il x=O y=O D=90/Jm �9 o 

~ O=160pm. �9 
D=2~)/Jm | e 

8P o.s 

'.... 
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Fig. 3 Var iat ion in the scattered l ight as a function of the point 
at which the particle passes through the equatorial plane, 
for 8 = 10 ~ 
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F ig .  4 V a r i a t i o n  in the scattered l igh t  as a func t ion  o f  the 
par t ic le  d iameter ,  f o r  0=100 

ellipsoids with their centers at 0 and their axes the same 
as the x, y, z, axes, the distribution of I / I c  can be ap- 
proximated by 

(5) 

The relation obtained is a power law with an exponent 
value compatible with the one that could be estimated from 
Mie's theory. Using Eq.(5), this gives us the experimental 
law: 

1.73 2 2 
I!-=( ~D-~-~ Exp~-O.4(~-[~2 + Y-~2 ) t  
Io \ Do/  ( \ ax ay . ,  

(6) 

If we set the angle of the PM axis in the same direction as 
the x axis (Fig. 1), the angle of observation 0 is 90 ~ We 
can take advantage of the probe volume elongation along the 
y axis to elimate the effect of this coordinate on the value of 
I. This can be done by limiting the field of the ellipsoid 
observed by the PM with a slit, on whcih the objective forms 
the image of the probe volume. The PM with a slit, on 
which the objective forms the image of the probe volume. The 
slit axis width is determined in such a way that it lets past 
only the light emitted from particles coming so close to the 
y - z  plane that the light intensity is practically independent 
to y. The calibration measurements mentioned above are 
taken again for 0 = 90 o and are given in Figs. 5 and 6. We 
observe that the exponential part of I is the same as the one 
obtained for 0 = 10 ~ but the exponent of the power function 
part of the diameter is 1.62, which is compatible with the- 
ory. (Brossmann, R., 1966) 

The standard deviations of the scattered light distribution 
as a function of the x and y coordinates in the equatorial 
plane are not independent of the particle diameter because 
the dimensions of the particles used are not negligible in 
comparison with dimensions of the probe volume. Thus the 
relative variation in the incident light illuminating a particle 
increases with the size of the particle, which enlarges the 
probe volume as seen by the PM. The variation in ax as a 
function of D is measured for 0 = 90 ~ and is shown in Fig. 

In this particular case, ox-~ 0.15mm and ay~ 3.5mm are 
representative orders of magnitude for these standard devia- 
tions, which shows that, in practice, the probe volume is and 
ellipsoid very much elongated along its y axis of revolution. 
The variation in /c  as a function of D was found by recor- 
ding the light scattered by a series of balls of known diame- 
ters passing through the center of the equatorial plane. The 
results are given in Fig. 4. 
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f, (mm) ity can be reduced relatively simply whorl certain conditions 
are fulfilled. 
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Fig. 7 Variation in the standard deviation a~ as a function of 
the diameter for 0=90 ~ 

7. Figure 8 is the ratio of the peak intensity I to the inten- 
sity L of light scattered at the center when the PM is 
equipped with a slkit. The probe volum is crossed at x = 0. 

The ideal distribution would be a vertical rectangle, but the 
diffraction in the slit and the finite size of the part icle  
change the shape of the distributioin. The phenomenon can be 
corrected in the measurements of I. Thus, when observing 
at an angle of 90 ~ a particle of diameter D passing through 
the equatorial plane of the probe volume at values of y 
b e t w e e n - ~  a n d + g  scatters light at an intensity I given 
by: 

I / D \Ls2 / x 2 \ (7) 

If the particle goes beyond the interval [-g, + g ] ,  the 
scattered light is occulted by the edges of the PM slit. Eq- 
uation(7) determines the nature of the ambiguity in the 
interpretation of I, as there exists an infinite number of (x, D) 
couples givihg the same peak value for 1. When we want to 
find the probability density of D from that of, I,  this ambigu- 

Fig.  8 
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. METHOD OF CALCULATING THE 
PROBABILITY D E N S I T Y  OF THE 

PARTICLE D I A M E T E R S  

Here we take the case where the general relatiom I =  (x, 
D) is not multiform in the considered domain. Let p (I) 
be the probabi l i ty  density of I and let p (x ,  D) be the 
related probabili ty density of x and D. The probabi l i ty  
that I will fall between two values, x and x + Ax , is given 
by the relation ; 

# ( x < I < x + A x ) =  f f  p (x ,D)dxdD (8) 
. J J X < f ( x , D ) < x + A x  

If the value/1, corresponds to x and/2 corresponds to x + 
Ax, we have : 

~ "p(I) dI = f f  < p(x,D) dxdD 
t t f(x,D)<12 

If we allow that the particle diameter D is statistically 
independent of the position x where it crosses the equato- 
rial plane, and furthermore that this position is a uniformly 
distr ibuted var iab le (s ince  no x can be prefer red  over 
another), we then have: 

p(x,D) = P(x) P(D) = -~-rp(D) 

where g' is an equivalent length such that 

f +~ d x  P +~ -U= 1= J_~ p(x)dx 

and p (D) is the probability density of D. 
It is also possible, for convenience, to represent p ( I )by  a 
histogram of N classes with the class boundaries chosen in 
decreasing values I.  The boundar ies  are denoted I0, /1 
A . . . . . .  Is . . . .  Iv, where Io is the highest observed light 
intensity and I~ is the instrument resolution threshold. 

Let n~ be the value of p(I)  for the i - th  class such that : 

fh mlp(I) dl--- n, A l, 

N 

where L_~- I i=  a li and ~ n ~  a L = l  
i = 1  

The corresponding diameter distribution class boundaries 

can be calculated by drawing the curves I = f ( x ,  D) and 
selecting I as a parameter. The j - t h  boundary Dr will be 
given by I s = f ( O ,  Dr). In effect, if Io is the highest peak 
value observed, this can only be due,. to the passage of the 
largest particle, of diameter Do, near the center, or rough- 
ly x=0.  The first value/1 may be due to particles of size 
Dz passing through the center, or to larger particles passing 
farther away through the probe volume, and so forth. We can 
thus define a histogram of particle sizes broken down in two 
classes such that ,  

fDT'-' p (D) dD = n'~ A Dr 
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where D s _ I - D s = A D s  and ~ n ' s A D j = l  
j=l 

Figure 9 shows the variation of D as a function of x for 
several values of I. As the curves are symmetrical about 
D axis, only the curves for positive x values are shown. The 
D histogram and the uniform distribution of the x's are 
shown opposite these curves. We can thus apoproximate the 
relation(8) with a discretized form giving, for example : 

p( Is < I < I,) = nsA h = ~ - (  as, n~ + as2n2 + as3m as, n, 

+ assn's) 

or, more generally: 

n, A I, = ~ - a , s n ' s  (9) 

n~ and nj are thus related by a system of linear equations 
of the form: 

1 nl A 11 = ~ - a l z n z  

1 , +  , 
n2,X h =  ~v-(a21n~ a22n~) 

l , ,+  , 
n3aI3=~-z(a3~n~ + a~2n2 a33m) 

nN A h, = ~ (  aNlnl + a~2n'2+ anon'3+ ...... + aNNn'N) 
2s 

Equation (9) can be expressed in the matrix form: 

In h I ]  = ~ ,  [M] [n'] 

Where[n,dI] is a column matrix made up of elements cal- 
culated from experimental data, and [M] is a triangular 
matrix made up of the elements a~s calculated from the 
number of classes chosen and the system calibration relation. 

we thus have: [n ' ]=2g ' [M]- ' [nAI]  

which thus makes it possible to calculate the particle size 
distribution from the ! value distributioin. This ! distribution 
is found by processing the electrical signal from the PAl, once 
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the Doppler frequency signal is filtered out, with a multichan- 
nel DIDAC 800 analyzer to obtain directly a function pro- 
portional to the probability density of the peak values I. 
Figure 10 gives an example of the results obtained. The 
number of the channels in the abscissa is prporortional to the 
probability density of the peak values I. Figure 10 gives 
and example of the results obtained. The number of the 
channels in the abscissa is proportional to the values of I. 
The proportionality constant is obtained from the system 
calibration. We then calculate the probability density of D by 
the method described above. Figure 11 shows the probabil- 
ity density calculated from the data in Fig. 10. The experi- 
ment is carried out using a set of glass balls with diameters 
ranging from 90 to 250/~m. 

4. APPLICATION LIMITS AND ERRORS 

A necessary condition for determining the particle diame- 
ter wi thout  amb igu i ty  is tha t  the I = f ( D )  curve  be 
monotonic. This curve is generally divided into three domains 
which, for the usual wavelengths of the lasers used, are the so 
-called "Rayleigh" domain for D<0.1t~m, the "Mie" 
domain for 0.1~m, the "Mie" domain for 0.1/~m<D< 10~m, 
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Fig. 11 Example of the diameter distributioin data 
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and the geometric optical domain for larger diameters. Mie' 
s more general theory covers the three domains and shows 
that I~ varies as D 8 in the Rayleigh domain but varies in 
the neigborhood of D 2 in the geometric optical domain. 
In the intermediate domain, the curve oscillates about a mean 
line of positive slope, and consequently makes the method 
unusable. In practice, the results is that the method is not 
applicable under the conditions existing with particles of less 
than 50 tz m. The upper limit is conditioned by the probe 
volume limitation. In the current measurement setup, a 
maximum size of 500am seems to be reasonable. 

Consepuently, the method proposed concerns particles 
going form 50 to 500/1 m. Within these limits, there exist 
two categories of errors inherent in the method:(1) 
Systematic errors, such as the edge effect error and coinci- 
dence error that can be corrected or controlled, and (2) 
random errors such as those introduced by the imprecision in 
the calibration. We can estimate these errors in the following 
ways. 

The edge effect error (see Fig. 8) is due to the fact that the 
distribution of the scattered light is not a perfect rectangle. 
Because of the finiteness of the particles and also probably 
because of the diffract ion from the PM slit,  the l ight 
decreases from the constant value it maintains in the center 
of the probe volume, tending to cancel out toward the outside. 
Thus there exist two lateral areas of roughly equal widths in 
which I / ~  is a function of x and y simultaneousely. This 
phenomenon can be taken into account by first calculating 
the matr ix[M],  which assumes that the distribution is a 
perfect rectangle of mean width g and then adding a cor- 
rection matrix estimated on basis of a linear decrease in the 
light intensity as a function of y over a width v, for which we 
have verfied that the value is practically indepentent of g. 
The result of the correction can be seen in Fig. 11. 

Another source of error, the coincidence error, is caused by 
the simultaneous presence of several particles in the probe 
volume. When this happens, the observed pedestal signal is 
the result of several superimposed elementary signals and 
becomes much more complicated to interpret. This souce of 
error depends on the mean particle concentration c and the 
dimensions of the probe volume. In effect, the probability p 
(K) that K particles will appear simultaneously inside the 
probe volume Vo is given by a Poisson distribution: 

_ ( c V o )  ~ -~o 
Pvo( K ) - ~ K ~ - e  

To avoid the coincidence error, it is preferable that the 
probability of finding two particles simultaneously in Vo be 
much lower than the probability of finding just one. The 
calculation yields: 

PvQ(2) <<1 --* cVo<2 
Pvo(1) 

For these experiments, we can estimate Vo at 0.5 x I0 -3 
cm 3 and c at some 50 particles per cubic centimenters. We 

get the value 0.023 or Vo, which is acceptable. When the 

concentration is too high, we can reduce Vo, but this increases 
the edge effect. Furthermore, and imprecise experimental 
determination of the exponent a in the Eq. (4) can also 
introduce an error, though this is generally rather small. In 
effect, for particles passing through the center of the probe 
volume, we have: 

which gives : 
AD 1 I h a  

If we choose/o and Do at the center of the observe inter- 
val of values, the maximum deviations occur at the extrem- 
ities of the interval. Typically, it can be seen that for an error 
A a / a  of 10%, the relative error A D / D  in the measure- 
ment of D is also on the order of 11)%. 

The method for determing the particle size assumes that 
the particles are spherical. Consquently, the balls selected for 
the various calibrations are selected according to this crite- 
rion. Yet the light scattered from a series of randomly chosen 
balls of various diamters, placed at the center of the probe 
volume, is measured while rotating them about their center. 
We thus found an invariance in rotation for the largest 
particles, but deviat ions reaching 50% for the smallest  
ones. This last effect is perhaps amplified by a variation in 
the position of the ball center during the rotation, which has 
a greater effect on the smaller particles. This results in an 
imprecision that is difficult to estimate in the p (/)distribu- 
tion and thus in p(D).  

5. CONCLUSION 

The proposed method of measuring the size distribution of 
spherical particles has the advantage of using a conventional 
Doppler effect laser anemometer setup. It requires only a 
filtering of the signal from the PM terminals to remove the 
Doppler signal, which can be processed elsewhere 
simultaneously, and retain only the pedestal. The principle 
consists of observing the probe volume along the smallest 
axis parallel to the interference fringes in this volume and 
taking advantage of its relative elongation to eliminate one 
of the space coordinates. Furthermore, the only quantity of 
interest is the peak value of the pedestal signal, the intensity 
of the light scattered by the particle when it passes through 
the equatorial plane. This intensity thus depends only on two 
variables : the abscissa of the point where the particle cros- 
ses this p lane  and the d i ame te r  of the par t ic le .  The  
relationship between this peak value and variables previously 
mentions can be done in situ. This calibration is used to 
calculate the size probability density from the peak value 
probability density, which can be found rather simply when 
the frequency band of the pedestal permits, as is the case 
here. 

The method for calculating the size distribution is based on 
a discretization of the problem that is convenient in program- 
ing the calculations, and on the uniform distribution of the 
particle passage through the equatorial plane. The results 
obtained by this method compare satisfactorily with a direct- 
ly measured size distribution. The method is only applicable 
in the so-called geometric optical domain of, considering the 
wavelength of the laser used, for particles from 50 to 500pro. 
The upper limit depends on the dimensions of the probe 
volume. 

To avoid having two or more particles in the probe volume 
at the same time, which makes the signal difficult to inter- 
pret, it is better that the concentration not be too high. 
Similarly, the probe volume should be the minimum compat- 
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ible with the size of the largest particles appearing in the 
experiment. The calibration errors are not extremely impor- 
tant. On the other hand, the effect of the non-sphericity of the 
particles may introduce an error that is difficult to evaluate 
but it does not seem to be negligible for small particles, where 
it may distort the distribution. 

Finally, the relative simplicity of implementing this method 
makes it usful whenever a direct calibration is possible. 
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